Selasa, 24 Februari 2009

Arahku

Ku melangkah, secara berarah

Ku melaju, kan bertuju

Semua dilandasi alasan

semua kan berdasar


Mungkin aku salah, Mungkin juga ku berdosa

ku merintih dan memikulnya

ku melaju dengan semuanya

semua beban yang kian lama terasa berat

beban yang tak kunjung berakhir


Tuhanku, Ku memohon padamu

Kumeminta maaf atas dosaku

jika langkahku salah, ku pinta jalan Mu

jikalau kata-kataku khilaf ku pinta petunjuk Mu

Pun jikalau fikiranku salah, ku pinta Hidayah Mu


Ku hanya manusia

yang mempunyai dua mata

dan dua telinga

serta satu lisan

Tuhanku

Kegelapan pusaran hidup

yang dulu ku ciptakan

kian lama kian menghancurkanku

Apakah ini adzab Mu

Tuhanku, Ampunilah aku


Pusaran ini kan menyeretku

Kegelapan ini telah hadir

didepan mataku

menjerat semua jiwa-jiwaku yang semu

menghanyutkan aku dalam petaka hidup yang tiada tara

andai aku kan dapat keluar dari gelombang yang melilitku ini

kan ku temui dirimu


walau semua sudah terjadi

ku hanya berujar

maafkan aku,Tuhan Maafkan aku....

Kuharap seorang kan tahu

Kamis, 19 Februari 2009

Mendung ini

Saat kabut datang menerpaku

Kelam, dingin dan penuh kesedihan

Seperti mendung dimalam hari

Melebihi kegelapan yang dirundung kegalauan


Walau ku diterterpa angin kencang

Yang menderu dan menghitam

Mencoba menyeretku

Memaksaku serta menjeratku

Untuk terus mengikuti langkah-langkah durjana

Menggerus keimananku

Badai ini berisikan angina yang hita

Dan mendung yang kelam


Apakah benar mendung berisi hujan

Akankan dia kan membasahiku

Akankah akan melumatkanku

Atau menyambar dengan petir-petir kencang


Kucoba berlari dan terus berlari

Menjauh namun tetap terjerat

Ku tahu ini salah, Ku tahu ini dosa

Namun tanganku sudah terlanjur terikat

Ku lunglai dalam kabut

Ku lemah dan tak berdaya dikegelapan mendung


Kepadamu Tuhan ku berdoa

Menangis akan semua khilaf

Akan semua luka dan air mata

Maafkan aku, ku terjerat

Ku tergerus di dalam lingkaran mendung

Mendung kelam

Kegelapan alam yang penuh murka


Senin, 16 Februari 2009

Black Hole

MUNGKIN tidak ada objek astronomi yang sepopuler lubang hitam (black hole). Di dalam arena diskusi dengan masyarakat luas di setiap kesempatan, pertanyaan mengenai objek eksotik yang satu ini seakan tidak pernah lupa untuk dilontarkan. Siapa sangka, istilah yang pertama kali diberikan oleh John Archibald Wheeler pada 1969 sebagai ganti nama yang terlalu panjang, yaitu completely gravitational collapsed stars, ini menjadi sedemikian akrab di kalangan awam sekalipun?

Konsep lubang hitam pertama kali diajukan oleh seorang matematikawan-astronom berkebangsaan Jerman, Karl Schwarzschild, pada tahun 1916 sebagai solusi eksak dari persamaan medan Einstein (Relativitas Umum). Penyelesaian berupa persamaan diferensial orde dua nonlinear--yang dihasilkan Schwarzschild hanya dengan bantuan pensil dan kertas kala itu--sangat memikat Einstein. Pasalnya, relativitas umum yang bentuk finalnya telah dipaparkan Einstein di Akademi Prusia pada 25 November 1915, oleh penemunya sendiri "hanya" berhasil dipecahkan dengan penyelesaian pendekatan. Bahkan dalam perkiraan Einstein, tidak akan mungkin menemukan solusi eksak dari persamaan medan temuannya tersebut.

Istilah lubang hitam sendiri menggambarkan kondisi kelengkungan ruang-waktu di sekitar benda bermassa dengan medan gravitasi yang sangat kuat. Menurut teori relativitas umum, kehadiran massa akan mendistorsi ruang dan waktu. Dalam bahasa yang sederhana, kehadiran massa akan melengkungkan ruang dan waktu di sekitarnya. Ilustrasi yang umum digunakan untuk mensimulasikan kelengkungan ruang di sekitar benda bermassa dalam relativitas umum adalah dengan menggunakan lembaran karet sangat elastis untuk mendeskripsikan ruang 3 dimensi ke dalam ruang 2 dimensi.

Bila kita mencoba menggelindingkan sebuah bola pingpong di atas hamparan lembaran karet tersebut, bola akan bergerak lurus dengan hanya memberi sedikit tekanan pada lembaran karet. Sebaliknya, bila kita letakkan bola biliar yang massanya lebih besar (masif) dibandingkan bola pingpong, akan kita dapati lembaran karet melengkung dengan cekungan di pusat yang ditempati oleh bola biliar tersebut. Semakin masif bola yang kita gunakan, akan semakin besar tekanan yang diberikan dan semakin dalam pula cekungan pusat yang dihasilkan pada lembaran karet.

Sudah menjadi pengetahuan publik bila gerak Bumi dan planet-planet lain dalam tata surya mengorbit Matahari sebagai buah kerja dari gaya gravitasi, sebagaimana yang telah dibuktikan oleh Isaac Newton pada tahun 1687 dalam Principia Mathematica-nya. Melalui persamaan matematika yang menjelaskan hubungan antara kelengkungan ruang dan distribusi massa di dalamnya, Einstein ingin memberikan gambaran tentang gravitasi yang berbeda dengan pendahulunya tersebut. Bila sekarang kita menggulirkan bola yang lebih ringan di sekitar bola yang masif pada lembaran karet di atas, kita menjumpai bahwa bola yang ringan tidak lagi mengikuti lintasan lurus sebagaimana yang seharusnya, melainkan mengikuti kelengkungan ruang yang terbentuk di sekitar bola yang lebih masif. Cekungan yang dibentuk telah berhasil "menangkap" benda bergerak lainnya sehingga mengorbit benda pusat yang lebih masif tersebut. Inilah deskripsi yang sama sekali baru tentang penjelasan gerak mengorbitnya planet-planet di sekitar Matahari a la relativitas umum. Dalam kasus lain bila benda bergerak menuju ke pusat cekungan, benda tersebut tentu akan tertarik ke arah benda pusat. Ini juga memberi penjelasan tentang fenomena jatuhnya meteoroid ke Matahari, Bumi, atau planet-planet lainnya.

Radius kritis

Melalui persamaan matematisnya yang berlaku untuk sembarang benda berbentuk bola sebagai solusi eksak atas persamaan medan Einstein, Schwarzschild menemukan bahwa terdapat suatu kondisi kritis yang hanya bergantung pada massa benda tersebut. Bila jari-jari benda tersebut (bintang misalnya) mencapai suatu harga tertentu, ternyata kelengkungan ruang-waktu menjadi sedemikian besarnya sehingga tak ada satupun yang dapat lepas dari permukaan benda tersebut, tak terkecuali cahaya yang memiliki kelajuan 300.000 kilometer per detik! Jari-jari kritis tersebut sekarang disebut Jari-jari Schwarzschild, sementara bintang masif yang mengalami keruntuhan gravitasi sempurna seperti itu, untuk pertama kalinya dikenal dengan istilah lubang hitam dalam pertemuan fisika ruang angkasa di New York pada tahun 1969.

Untuk menjadi lubang hitam, menurut persamaan Schwarzschild, Matahari kita yang berjari-jari sekira 700.000 kilometer harus dimampatkan hingga berjari-jari hanya 3 kilometer saja. Sayangnya, bagi banyak ilmuwan kala itu, hasil yang diperoleh Schwarzschild dipandang tidak lebih sebagai sebuah permainan matematis tanpa kehadiran makna fisis. Einstein termasuk yang beranggapan demikian. Akan terbukti belakangan, keadaan ekstrem yang ditunjukkan oleh persamaan Schwarzschild sekaligus model yang diajukan fisikawan Amerika Robert Oppenheimer beserta mahasiswanya, Hartland Snyder, pada 1939 yang berangkat dari perhitungan Schwarzschild berhasil ditunjukkan dalam sebuah simulasi komputer.

Kelahiran lubang hitam

Bagaimana proses fisika hingga terbentuknya lubang hitam? Bagi mahasiswa tingkat sarjana di Departemen Astronomi, mereka mempelajari topik ini di dalam perkuliahan evolusi Bintang. Waktu yang diperlukan kumpulan materi antarbintang (sebagian besar hidrogen) hingga menjadi "bintang baru" yang disebut sebagai bintang deret utama (main sequence star), bergantung pada massa cikal bakal bintang tersebut. Makin besar massanya, makin singkat pula waktu yang diperlukan untuk menjadi bintang deret utama. Energi yang dimiliki "calon" bintang ini semata-mata berasal dari pengerutan gravitasi. Karena pengerutan gravitasi inilah temperatur di pusat bakal bintang menjadi meninggi.

Dari mana bintang-bintang mendapatkan energi untuk menghasilkan kalor dan radiasi, pertama kali dipaparkan oleh astronom Inggris Sir Arthur Stanley Eddington. Sir Eddington juga yang pernah memimpin ekspedisi gerhana Matahari total ke Pulau Principe di lepas pantai Afrika pada 29 Mei 1919 untuk membuktikan ramalan teori relativitas umum tentang pembelokan cahaya bintang di dekat Matahari. Meskipun demikian, fisikawan nuklir Hans Bethe-lah yang pada tahun 1938 berhasil menjelaskan bahwa reaksi fusi nuklir (penggabungan inti-inti atom) di pusat bintang dapat menghasilkan energi yang besar. Pada temperatur puluhan juta Kelvin, inti-inti hidrogen (materi pembentuk bintang) mulai bereaksi membentuk inti helium. Energi yang dibangkitkan oleh reaksi nuklir ini membuat tekanan radiasi di dalam bintang dapat menahan pengerutan yang terjadi. Bintang pun kemudian berada dalam kesetimbangan hidrostatik dan akan bersinar terang dalam waktu jutaan bahkan milyaran tahun ke depan bergantung pada massa awal yang dimilikinya.

Semakin besar massa awal bintang, semakin cepat laju pembangkitan energinya sehingga semakin singkat pula waktu yang diperlukan untuk menghabiskan pasokan bahan bakar nuklirnya. Manakala bahan bakar tersebut habis, tidak akan ada lagi yang mengimbangi gravitasi, sehingga bintang pun mengalami keruntuhan kembali.

Nasib akhir sebuah bintang ditentukan oleh kandungan massa awalnya. Artinya, tidak semua bintang akan mengakhiri hidupnya sebagai lubang hitam. Untuk bintang-bintang seukuran massa Matahari kita, paling jauh akan menjadi bintang katai putih (white dwarf) dengan jari-jari lebih kecil daripada semula, namun dengan kerapatan mencapai 100 hingga 1000 kilogram tiap centimeter kubiknya! Tekanan elektron terdegenerasi akan menahan keruntuhan lebih lanjut sehingga bintang kembali setimbang. Karena tidak ada lagi sumber energi di pusat bintang, bintang katai putih selanjutnya akan mendingin menjadi bintang katai gelap (black dwarf).

Untuk bintang-bintang dengan massa awal yang lebih besar, setelah bintang melontarkan bagian terluarnya akan tersisa bagian inti yang mampat. Jika massa inti yang tersisa tersebut lebih besar daripada 1,4 kali massa Matahari (massa Matahari: 2x10 pangkat 30 kilogram), gravitasi akan mampu mengatasi tekanan elektron dan lebih lanjut memampatkan bintang hingga memaksa elektron bergabung dengan inti atom (proton) membentuk netron. Bila massa yang dihasilkan ini kurang dari 3 kali massa Matahari, tekanan netron akan menghentikan pengerutan untuk menghasilkan bintang netron yang stabil dengan jari-jari hanya belasan kilometer saja. Sebaliknya, bila massa yang dihasilkan pasca ledakan bintang lebih dari 3 kali massa Matahari, tidak ada yang bisa menahan pengerutan gravitasi. Bintang akan mengalami keruntuhan gravitasi sempurna membentuk objek yang kita kenal sebagai lubang hitam. Bila bintang katai putih dapat dideteksi secara fotografik dan bintang netron dengan teleskop radio, lubang hitam tidak akan pernah dapat kita lihat secara langsung!

Mengenali lubang hitam

Bila memang lubang hitam tidak akan pernah bisa kita lihat secara langsung, lantas bagaimana kita bisa meyakini keberadaannya? Untuk menjawab pertanyaan ini, John Wheeler sebagai tokoh yang mempopulerkan istilah lubang hitam, memiliki sebuah perumpamaan yang menarik. Bayangkan Anda berada di sebuah pesta dansa di mana para pria mengenakan tuksedo hitam sementara para wanita bergaun putih panjang. Mereka berdansa sambil berangkulan, dan karena redupnya penerangan di dalam ruangan, Anda hanya dapat melihat para wanita dalam balutan busana putih mereka. Nah, wanita itu ibarat bintang kasat mata sementara sang pria sebagai lubang hitamnya. Meskipun Anda tidak melihat pasangan prianya, dari gerakan wanita tersebut Anda dapat merasa yakin bahwa ada sesuatu yang menahannya untuk tetap berada dalam "orbit dansa".

Demikianlah para astronom dalam mengenali keberadaan sebuah lubang hitam. Mereka menggunakan metode tak langsung melalui pengamatan bintang ganda yang beranggotakan bintang kasat mata dan sebuah objek tak tampak. Beruntung, semesta menyediakan sampel bintang ganda dalam jumlah yang melimpah. Kenyataan ini bukanlah sesuatu yang mengherankan, sebab bintang-bintang memang terbentuk dalam kelompok. Hasil pengamatan menunjukkan bahwa di galaksi kita, Bima Sakti, terdapat banyak bintang yang merupakan anggota suatu gugus bintang ataupun asosiasi.

Telah disebutkan di atas bahwa medan gravitasi lubang hitam sangat kuat, jauh lebih kuat daripada bintang kompak lainnya seperti bintang “katai putih” maupun bintang netron. Dalam sebuah sistem bintang ganda berdekatan, objek yang lebih masif dapat menarik materi dari bintang pasangannya. Demikian pula dengan lubang hitam. lubang hitam menarik materi dari bintang pasangan dan membentuk cakram akresi di sekitarnya (bayangkan sebuah donat yang pipih bentuknya). Bagian dalam dari cakram yang bergerak dengan kelajuan mendekati kelajuan cahaya, akan melepaskan energi potensial gravitasinya ketika jatuh ke dalam lubang hitam. Energi yang sedemikian besar diubah menjadi kalor yang akan memanaskan molekul-molekul gas hingga akhirnya terpancar sinar-X dari cakram akresi tersebut. Sinar-X yang dihasilkan inilah yang digunakan oleh para astronom untuk mencurigai keberadaan sebuah lubang hitam dalam suatu sistem bintang ganda. Untuk lebih meyakinkan bahwa bintang kompak tersebut benar-benar lubang hitam alih-alih bintang “katai putih” ataupun bintang netron, astronom menaksir massa objek tersebut dengan perangkat matematika yang disebut fungsi massa. Bila diperoleh massa bintang kompak lebih dari 3 kali massa Matahari, besar kemungkinan objek tersebut adalah lubang hitam.

Judhistira Aria Utama (Astronomi FMIPA-ITB) dari http://www.forumsains.com

disadur dari www.fisikanet.lipi.go.id

Sumber : Pikiran Rakyat (6 Oktober 2005)

Partikel Elementer

Kelahiran Keluarga Fermion - Kelahiran Elektron:

Penemuan elektron oleh J.J. Thomson terjadi pada tahun 1897, ditengah-tengah tabung gelas dan kilatan kelistrikan, fisikawan British J.J. Thomson berspekulasi ke sisi dalam atom. Di laboratorium Cavendish Universitas Cambridge, percobaan Thomson dengan arus listrik di dalam tabung gelas kosong. Ia menyelidiki teka-teki lama yang dikenal sebagai "sinar katoda".

Percobaannya mendorong dirinya untuk membuat pengajuan yang berani: sinar misterius ini adalah “aliran partikel” yang jauh lebih kecil dari atom, aliran partikel tersebut secara fakta adalah serpihan-serpihan atom yang teramat kecil. Ia menyebut partikel-partikel ini "butiran-butiran", dan menyarankan bahwa butiran-butiran tersebut mungkin penyusun materi dalam atom. Terasa mengejutkan untuk membayangkan bahwa terdapat partikel dalam atom - kebanyakan orang memikirkan bahwa atom tak terbagi, yakni satuan paling kecil dari materi.

Spin

Elektron adalah partikel sub atomik fundamental yang membawa muatan listrik negatif. Elektron memiliki spin ½ lepton yang berpartisipasi dalam interaksi elektromagnetik, dan massanya lebih kecil dibanding seperseribu atom terkecil. Muatan kelistrikannya didefinisikan oleh konvensi menjadi negatip, dengan nilai -1 dalam satuan atom. Bersama-sama dengan anti atom, elektron menyusun atom; interaksi elektron dengan inti terdekat adalah penyebab utama ikatan kimia.

Sejarah

Nama “elektron” berasal dari kata Yunani untuk batu amber, ήλεκτρον. Materi ini memainkan peranan penting dalam penemuan fenomena kelistrikan. Orang Yunani kuno mengetahui, sebagai contoh, bahwa menggosok sepotong batu amber dengan bulu binatang meninggalkan muatan listrik pada permukaannya, yang dapat kemudian menciptakan percikan.

Elektron sebagai unit muatan dalam elektrokimia diajukan oleh G. Johnstone Stoney pada tahun 1874, yang juga menciptakan istilah elektron pada tahun 1894. Selama akhir tahun 1890-an sejumlah fisikawan mengajukan bahwa kelistrikan dapat dipahami terdiri dari unit diskrit, yang diberi sejumlah nama, namun realitas mereka tidak ditetapkan dalam cara pemaksaan.

Penemuan bahwa elektron adalah partikel subatomik dibuat pada tahun 1897 oleh J.J. Thomson di Laboratorium Cavendish Universitas Cambridge, sementara ia mempelajari tabung sinar katoda. Tabung sinar katoda disegel silinder gelas dimana dua elektroda dipisahkan oleh vakum. Ketika tegangan diterapkan melintasi elektroda, sinar katoda dibangkitkan, menyebabkan tabung bercahaya.

Melalui eksperimen, Thomson menemukan bahwa muatan negatip tak dapat dipisahkan dari sinar (dengan menerapkan magnetisme), dan bahwasannya sinar dapat dibelokkan oleh medan listrik. Ia menyimpulkan bahwa sinar bahwa sinar-sinar ini, ketimbang gelombang, tersusun dari partikel bermuatan negatip yang ia sebut “korpuskel (corpuscles)”. Ia mengukur perbandingan massa-muatan elektron dan menemukannya lebih dari ribuan kali lebih kecil daripada ion hidrogen, menyarankan bahwa mereka sangat bermuatan atau bermassa sangat kecil.

Eksperimen berikutnya oleh ilmuwan lain menegakkan kesimpulan berikutnya. Perbandingan massa-muatan juga tak gayut pilihan material katoda dan gas pada awalnya dalam tabung vakum. Ini membawa Thomson untuk menyimpulkan bahwa mereka adalah universal diantara seluruh material. Muatan elektron secara cermat diukur oleh R.A. Millikan dalam eksperimen tetes minyak pada tahun 1909.

Hukum periodik menyatakan bahwa sifat-sifat kimia elemen sebagian besar berulang sendiri secara periodik dan adalah landasan tabel periodik elemen-elemen. Hukum itu sendiri pada awalnya dijelaskan dengan massa atomik elemen. Namun, sebagaimana terdapat anomali dalam tabel periodik, usaha dibuat untuk menemukan penjelasan yang lebih baik untuknya. Pada tahun 1913, Henry Moseley memperkenalkan konsep bilangan atomik dan menjelaskan hukum periodik dalam kaitan jumlah proton yang dimiliki masing-masing elemen.

Dalam tahun yang sama, Niels Bohr menunjukkan bahwa elektron adalah fondasi nyata dari tabel periodik. Pada tahun 1916, Gilbert Newton Lewis menjelaskan ikatan kimia elemen-elemen dengan interaksi elektron.

Sifat dan Perilaku Elektron

Elektron memiliki muatan listrik -1.6022 x 10-19 coulomb, bermassa 9.11 x 10-31 kg berbasis pada muatan atau pengukuran massa dan massa diam relativistik sekitar 0.511 MeV/c2. Massa elektron sekitar 1/1836 massa proton. Simbol elektron umum adalah e-.

Menurut mekanika kuantum, elektron dapat direpresentasi oleh fungsi gelombang, dimana rapat elektron probabilitas terhitung dapat ditentukan. Orbital masing-masing elektron dalam atom dapat dideskripsikan dengan fungsi gelombang. Berbasiskan prinsip ketakpastian Heisenberg, momentum dan posisi pasti dari elektron nyata tak dapat secara serempak ditentukan.

Ini adalah pembatasan yang mana, dalam peristiwa ini, dengan sederhana menyatakan bahwa lebih akurat kita mengetahui posisi partikel, berkurang keakuratan momentumnya, dan sebaliknya. Elektron memiliki spin ½ dan adalah fermion (ia mengikuti statistik Fermi-Dirac). Sebagai tambahan terhadap momentum sudut intrinsiknya, elektron memiliki momen magnetik intrinsik sepanjang sumbu spinnya.

Elektron dalam atom diikat terhadap atom; elektron bergerak secara bebas dalam vakum, ruang atau media tertentu adalah elektron bebas yang dapat difokuskan dalam berkas elektron. Ketika elektron bebas bergerak, terdapat aliran netto muatan, aliran ini disebut arus listrik. Kecepatan apung (drift velocity) elektron dalam kawat baja adalah pada orde mm/jam. Namun, kecepatan dimana arus pada satu titik dalam kawat menyebabkan arus dalam bagian lain pada kawat adalah secara khas 75% kecepatan cahaya.

Dalam beberapa superkonduktor, pasangan elektron bergerak sebagai pasangan Cooper dimana gerak mereka digandeng menuju maeri dekat melalui vibrasi kisi disebut fonon. Jarak pemisah antara pasangan-pasangan Cooper adalah sekitar 100 nm. Benda memiliki muatan listrik ketika benda memiliki lebih banyak atau lebih sedikit elektron ketimbang yang diperlukan untuk menyeimbangkan muatan positip inti atom.

Ketika terdapat kelebihan elektron, objek disebut bermuatan negatip. Ketika terdapat lebih sedikit elektron dibanding proton, objek disebut bermuatan positip. Ketika jumlah elektron dan jumlah proton sama, muatan-muatan mereka membatalkan satu sama lain dan objek disebut secara kelistrikan netral. Benda makroskopik dapat menambah muatan listrik melalui penggosokan, oleh fenomena triboelektrik.

Ketika elektron dan positron bertumbukan, mereka saling menghilangkan satu sama lain dan menghasilkan pasangan foton energi tinggi atau partikel lain. Pada sisi lain, foton energi tinggi dapat mentransformasi menjadi elektron dan positron dengan proses yang disebut produksi pasangan, namun hanya dalam keberadaan partikel bermuatan terdekat, semisal inti atom.

Elektron sekarang ini dideskripsikan sebagai partikel fundamental atau partikel elementer. Ia tak memiliki struktur. Oleh karena itu, untuk kesesuaian, ia biasanya didefinisikan atau diasumsikan muatan titik matematis seperti partikel, dengan tak ada perluasan ruang.

Namun, ketika partikel uji dipaksa untuk mendekati elektron, kita mengukur perubahan-perubahan dalam sifat-sifatnya (muatan dan massa). Efek ini adalah umum untuk seluruh partikel elementer: teori sekarang menyarankan bahwa efek ini dikarenakan pengaruh fluktuasi vakum dalam ruang lokalnya, sehingga sifat-sifat terukur dari jarak signifikan ditinjau menjadi penjumlahan sifat-sifat polos dan efek vakum (lihat renormalisasi).

Jari-jari elektron klasik adalah 2.8179 × 10-15 m. Ini adalah jari-jari yang diduga/disimpulkan dari muatan listrik elektron, dengan menggunakan teori klasik elektrodinamika saja, dengan mengabaikan mekanika kuantum. Elektrodinamika klasik (elektrodinamika Maxwell) adalah konsep yang lebih tua yang secara luas digunakan untuk penerapan praktis kelistrikan, teknik elektro, fisika semikonduktor dan elektromagnetika; elektrodinamika kuantum, pada sisi lain, berguna untuk penerapan mencangkup fisika partikel modern dan beberapa aspek fisika optik, laser dan kuantum.

Berbasis teori sekarang, kecepatan elektron dapat mendekati, namun tak pernah mencapai, c (kecepatan cahaya dalam vakum). Pembatasan ini diatributkan ke teori relativitas khusus Einstein yang mendefinisikan kecepatan cahaya sebagai suatu konstanta dalam seluruh kerangka inersia.

Namun, ketika elektron relatistik diinjeksikan ke medium dielektrik, semisal air, dimana kecepatan lokal cahaya secara signifikan kurang dari c, elektron akan (secara temporer) berjalan lebih cepat dibanding cahaya dalam medium. Sebagaimana mereka berinteraksi dengan medium, mereka membangkitkan cahaya pucat kebiru-biruan, disebut radiasi Cherenkov. Efek relativitas khusus didasarkan pada kuantitas yang dikenal sebagai γ atau faktor Lorentz. γ adalah fungsi dari v, kecepatan partikel.

Untuk contoh, pemercepat partikel SLAC dapat mempercepat elektron hingga 51 GeV. Ini memberi gamma 100.000, karena massa diam elektron adalah 0.51 MeV/c2 (massa relativistik elektron ini adalah 100.000 kali massa diamnya).

Dalam mekanika kuantum relativistik, elektron dideskripsikan oleh persamaan Dirac yang mendefinisikan elektron sebagai titik matematis. Dalam teori medan kuantum, perilaku elektron dideskripsikan oleh elektrodinamika kuantum, sebuah teori gauge U(1). Dalam model Dirac, elektron didefinisikan menjadi titik matematis, seperti titik, partikel “polos” bermuatan yang dikelilingi oleh lautan pasangan interaksi partikel virtual dan antipartikel.

Hal ini memberikan koreksi sedikit di atas 0,1% terhadap nilai yang diprediksi rasio gyromagnetik elektron dari dengan pasti 2 (sebagaimana diprediksi oleh model partikel tunggal Dirac). Kesesuaian yang luar biasa presisi dari prediksi ini dengan nilai yang ditentukan secara eksperimen dipandang sebagai salah satu prestasi besar fisika modern.

Dalam Model Standar fisika partikel, elektron adalah generasi pertama lepton bermuatan. Ia membentuk doublet isospin lemah dengan neutrino elektron; dua partikel ini berinteraksi dengan satu sama lain melalui kedua muatan dan arus netral interaksi lemah. Elektron adalah sangat mirip dengan lebih dari dua partikel masif generasi lebih tinggi, muon dan tau lepton, yang adalah identik dalam muatan, spin dan interaksi namun berbeda dalam massa.

Bagian anti materi elektron adalah positron. Positron memiliki jumlah muatan listrik yang sama dengan elektron, kecuali muatannya adalah positip. Ia memiliki massa dan spin yang sama dengan elektron. Ketika elektron dan positron bertemu, mereka saling menghilangkan satu sama lain, memunculkan dua foton sinar gamma diemisikan secara kasar 1800 satu sama lain.

Jika elektron dan positron memiliki momentum yang dapat diabaikan, tiap-tiap sinar gamma akan memiliki energi 0.511 MeV. Elektron adalah elemen kunci dalam elektromagnetisme, sebuah teori yang akurat untuk sistem makroskopik, dan untuk model klasik sistem mikroskopik.

Muon
Dalam model standar fisika partikel, muon (dari kata Yunani huruf mu digunakan untuk mewakilinya) adalah sebuah partikel fundamental semi stabil dengan muatan listrik negatip dan spin ½. Bersama-sama dengan elektron, tauon dan neutrino, ini dikelompokkan sebagai bagian keluarga lepton dari fermion. Seperti seluruh partikel fundamental, muon memiliki pasangan antimateri bermuatan berlawanan tetapi memiliki massa dan spin yang sama: antimuon.

Untuk alasan historis, muon terkadang dirujuk sebagai mu meson, meskipun mereka tidak dikelompokkan sebagai meson oleh fisikawan partikel modern. Muon memiliki massa 207 kali massa elektron. Karena interaksi mereka adalah serupa dengan elektron, muon dapat seringkali dipikirkan sebagai elektron berat secara ekstrim. Muon dinyatakan oleh µ- dan antimuon oleh µ+.

Di bumi, muon diciptakan ketika pion bermuatan meluruh. Pion diciptakan di atmosfer atas oleh radiasi kosmis dan memiliki waktu peluruhan yang sangat pendek - beberapa nanodetik. Muon tercipta ketika peluruhan pion juga hidup pendek: waktu peluruhan mereka adalah 2,2 mikrodetik. Akan tetapi muon di atmosfer bergerak dengan kecepatan yang sangat tinggi, sehingga efek dilasi waktu dari relativitas khusus membuat mereka menjadi mudah dideteksi pada permukaan bumi.

Sebagaimana dengan kasus lepton bermuatan lain, terdapat muon-neutrino yang memiliki flavor yang sama seperti muon. Muon secara alami meluruh menjadi sebuah elektron, sebuah elektron-antineutrino, dan sebuah muon-neutrino.

Atom Muon
Muon adalah partikel elementer pertama yang ditemukan yang tidak muncul dalam atom biasa. Muon negatif dapat, bagaimana pun, membentuk atom muonik dengan menggantikan elektron dalam atom biasa. Atom muonik adalah jauh lebih kecil dibanding atom sejenis karena, untuk mengekalkan momentum anguler, muon yang lebih masif harus lebih dekat ke inti atom dibanding pasangan elektron yang kurang masif.

Muon positif, ketika dihentikan dalam materi biasa, dapat juga mengikat sebuah elektron dan membentuk atom muonium (Mu), dimana muon beraksi sebagai inti. Massa tereduksi dari muonium, yakni jari-jari Bohrnya, adalah sangat dekat ke hidrogen, oleh karenanya atom berumur pendek ini berperilaku secara kimiawi - dalam aproksimasi pertama - seperti isotopnya yang lebih berat, hidrogen, deuterium dan tritium.

Sejarah

Muon ditemukan oleh Carl D. Anderson pada tahun 1936 sewaktu ia mempelajari radiasi kosmis. Ia menyatakan partikel-partikel yang melengkung dalam suatu cara berbeda dari elektron dan partikel-partikel yang dikenal ketika melewati medan magnetik. Secara khusus, partikel baru ini melengkung menuju derajat yang lebih kecil dibanding elektron, ettapi lebih tajam dibanding proton. Diasumsikan bahwa muatan listriknya sama dengan elektron, dan demikian untuk menghitung perbedaan kelengkungan, itu dianggap bahwa partikel-partikel ini adalah massa menengah (terletak antara elektron dan proton).

Untuk alasan ini, Anderson pada awalnya menyebut partiel baru sebuah mesotron, mengadopsi awalan meson- dari kata Yunani untuk "menegah". Dengan segera setelahnya, partikel tambahan dari massa menegah ditemukan, dan istilah lebih umum meson diadopsi untuk merujuk bagi sembarang partikel demikian.

Dipaksa oleh kebutuhan untuk membedakan antara tipe-tipe berbeda dari meson, mesotron dinamai ulang dengan meson mu (dengan huruf Yunani µ (mu) digunakan untuk mengaproksimasi bunyi huruf Latin m).

Akan tetapi, segera ditemukan bahwa mu meson secara signifikan berbeda dari meson yang lain; sebagi contoh, hasil peluruhannya mencangkup neutrino dan antineutrino, ketimbang satu atau yang lain sebagaimana teramati dalam meson yang lain. Jadi mu meson bukanlah meson keseluruhan, dan juga istilah mu meson adalah bebas dan diganti dengan istilah modern muon.

Di pertengahan tahun 1970-an, fisikawan eksperimental memikirkan percobaan menembak neutrino pada target proton. Menurut apa yang kemudian diketahui tentang interaksi lemah, mereka mengharapkan tumbukan untuk mengubah neutrino menuju muon, dan proton menuju bekas peninggalan. Mereka terkejut menemukan dua muon, satu muon negatif dan satu muon positif, dihasilkan dari tumbukan demikian.

Ini membangkitkan kesuksesan diskusi teoritik, hingga sebuah kesepakatan muncul pada bagaimana muon positif hadir. Tumbukan proton atau neutrino tak hanya menghasilkan bekas peninggalan proton dan muon negatif, tetapi sebuah kuark pesona, dan kuark dengan segera meluruh menjadi kuark asing, sebuah neutrino muon, dan sebuah muon positif [4].

Muon adalah yang pertama dari daftar panjang partikel subatomik yang penemuannya pada awalnya digagalkan ahli teoritik yang tak dapat membuat 'hutan' yang membingungkan sesuai ke dalam beberapa skema konseptual yang rapi. Willis Lamb mengklaim bahwa ia telah mendengarnya mengatakan bahwa pada satu titik "penemu partikel elementer baru biasa dianugerahi hadiah Nobel, tetapi penemuan demikian sekarang seharusnya diganjar dengan US Dollar 10.000,-".

Muon (dari huruf mu (μ) digunakan untuk mewakilinya) adalah partikel elementer dengan muatan listrik negatip dan spin ½. Muon memiliki waktu hidup rata-rata 2,2 μs, lebih panjang dibanding sembarang lepton, meson atau baryon tak stabil yang lain kecuali untuk neutron.

Bersama-sama dengan elektron, tau dan neutrino, muon diklasifikasi sebagai lepton. Seperti seluruh partikel fundamental, muon memiliki kawan anti materi bermuatan berlawanan namun bermassa dan berspin sama: antimuon, juga disebut muon positip. Muon dinyatakan oleh μ− dan anti muon oleh μ+.

Untuk alasan historis, muon terkadang dirujuk sebagai mu meson, meskipun muon tidak diklasifikasikan sebagai meson oleh fisikawan partikel modern. Muon memiliki massa 105,7 MeV/c2, yang mana 206,7 kali massa elektron.

Karena interaksi muon sangat mirip dengan elektron, muon dapat ditinjau sebagai versi yang jauh lebih berat dari elektron. Dikarenakan massa muon yang lebih besar, muon tidak mengemisikan sebanyak radiasi bremsstrahlung; konsekuensinya, mereka jauh lebih menembus dibanding elektron.

Sebagaimana kasus lepton bermuatan yang lain, terdapat neutrino-muon yang memiliki flavor yang sama sebagaimana muon. Neutrino-muon dinyatakan oleh νμ.

Lansung diambil dari http://id.wikipedia.org/wiki/Partikel_Elementer

Senin, 09 Februari 2009

Lonely Day

Such a lonely day
And its mine
The most loneliest day of my life

Such a lonely day
Should be banned
This day that I can't stand

The most loneliest day of my life
The most loneliest day of my life

Such a lonely day
Shouldn't exist
A day that Ill never miss
Such a lonely day
And its mine
The most loneliest day of my life

And if you go, I wanna go with you
And if you die, I wanna die with you

Take your hand and walk away

The most loneliest day of my life
The most loneliest day of my life
The most loneliest day of my life
Life

Such a lonely day
And its mine
A day that I'm glad I survived

by system of down

Rabu, 04 Februari 2009

Ku jauh

Kini aku terasa sangan jauh darimu

Tiada tau siapa yang kan memanduku

Cinta takkan pernah ditebak

Kemanakah hati akan lari

Salahkah kita jika masih bingung ?...


 

Ketika ku jauh darimu

Terasa ada yang hilang tiada terasa

Cinta ini

Apa mau hati ini

Salahkah aku …..

Jika ku tak bias dustai untuk mencinta


 

Aku hanya tak bias dustai hati

Aku ingin mencinta

Dan Kesetiaaan


 

BERTANYA-TANYA SETIAP WAKTU

BERTANYA-TANYA SETIAP WAKTU


 


 


 

Tuhanku

Berapa lama lagi aku terdiam disini

Mengharap dirinya dating dan membawa cinta untukku

Cinta yang suci dan tulus

Namun ku tak bias menggapai rindu


 

Mengapa resahkah lagi hati ini

Seakan ingin ku lari

Mengejar bayangmu wahai kasih

Ku rindu segala senyum dan belaianmu

Bernarkah senyummu tidak menipu


 

Ku mohon Tuhanku

Benarkah dia kan jadi milikku

Sampai kapankah aku kan terdiam

Dan menunggu

Ku terus bertanya-tanya dalam hati

Di setiap waktuku


 

Seandainya ku tahu

Hanya engkaulah segalanya dihatiku

Sungguh ku tidak pernah ragu

Percayalah kepadaku

Ku hanya minta suatu hal untukku

Janganlah kau bagi cintaku

Yang hanya kutujukan untukmu


 


 


 


 


 

Selasa, 03 Februari 2009

bunga-bunga terbang

Telah lama aku menanti dirimu

berhari-hari, berminggu-minggu

bahkan bertahun-tahun

kutunggu pernyataan janji cinta

wahai bungaku datanglah padaku

bawalah cintaku pergi

bersama semua rasa cinta

terbang bersama bintang


kutunggu dirimu datang dari perantauan

aku tetap disini

ditempat pertemuan cinta kita

kasih kedatanganmu sangat kunanti

kunanti hadirnya cintaku yang telah lama layu

ku tetap bertahan dengan cobaan

terpaan badai,

cuaca yang kering dan panas

ku tetap berdiiri disini

kan kunanti dirimu sampai akhir usiaku

ku kan berjanji membuat dirimu terindah bagiku

terbaik bagi hidupku


wahai bungaku

jangankan kau terbangkan angan-anganku

melayang menuju badai diufuk barat

jangan musnahkan harapan yang telah terbina

jangan kau hapus keajaiban cintamu dariku


wahai bunga

ku tetap bertahan walau ku tak berpijak

ku kan tetap memelukmu

walau angin menerjang

janganlah gemercik air memisahkan kita

Senin, 02 Februari 2009

Biar waktu terus bergulir

Biar waktu terus bergulir
walau banyak yang hilang dariku
tergerus oleh masa

bukan aku tidak ingin cinta
lebih dari sekedar memandang matahari
salahkah aku jika silau mataku
terkesima oleh sinaran cinta

aku hanya tak bisa dustai hati
cinta takkan bisa ditutupi
juga tidak bisa ditebak
biarlah semua kini kita berbenah
kutunggu purnama yang membenahi semua

dan biarlah waktu terus bergulir

Hadapi Dengan Senyuman

Ketika semua masalah telah mendera kita
ketika segala beban ada di pundak kita
atau ketika segala langkah kita terseok tak berdaya

akankah kita menangis dan mengeluh
akankah kita berencana mengakhiri hidup
atau kita menyalahkan orang lain
mencela orang lain barangkali

seharusnya kita sabar dan mencoba ikhlas
mencoba untuk menerima kasih dari Tuhan
ikhlas bukan berarti mengalah
tetapi menghadapi semua masalah
berusaha dengan segenap raga
untuk menjadi lebih baik
setelah semua langkah telah kita jalankan
kita tinggal menyerahkan semua masalah
kita sandarkan pada Dzat yang Maha Kuasa
pada Dzat yang Maha Suci

setelah itu


kita hadapi semuanya dengan senyuman



by ken